Beta-galactosidase assay

When a transient or stable transfection assay is developed for a promoter, a primary objective is to quantify promoter strength. Because transfection efficiency in such assays can be low, promoters are commonly fused to heterologous reporter genes that encode enzymes that can be quantified using highly sensitive assays. The reporter protein's activity or fluorescence within a transfected cell population is approximately proportional to the steady-state mRNA level. Although the Escherichia coli lacZ gene, encoding beta-galactosidase (beta-gal), can be used as a standard reporter for monitoring the strength of a promoter or enhancer in a transient or stable transfection assay, it is predominantly used as an internal control during transient transfection experiments. When used in this manner, cells are usually transfected with the control plasmid (containing a ubiquitously active viral promoter fused to the E. coli lacZ gene) and an experimental plasmid containing another reporter gene (e.g., luciferase or chloramphenicol acetyltransferase [CAT]) under the control of the promoter or enhancer of interest. The basic colorimetric assay described here is the simplest and least expensive assay for quantifying beta-gal activity. The cells are lysed and, after determining the total protein concentration in the extracts, an aliquot of the extract is mixed with the reaction substrate, O-nitrophenyl-beta-D-galactopyranoside (ONPG), in a buffer containing sodium phosphate and magnesium chloride. When the yellow product becomes visible, the optical densities of the samples are determined spectrophotometrically.

Similar articles

Smale ST. Smale ST. Cold Spring Harb Protoc. 2010 May;2010(5):pdb.prot5422. doi: 10.1101/pdb.prot5422. Cold Spring Harb Protoc. 2010. PMID: 20439409

Smale ST. Smale ST. Cold Spring Harb Protoc. 2010 May;2010(5):pdb.prot5421. doi: 10.1101/pdb.prot5421. Cold Spring Harb Protoc. 2010. PMID: 20439408

Lim K, Chae CB. Lim K, et al. Biotechniques. 1989 Jun;7(6):576-9. Biotechniques. 1989. PMID: 2517211

Shcharbin D, Pedziwiatr E, Blasiak J, Bryszewska M. Shcharbin D, et al. J Control Release. 2010 Jan 25;141(2):110-27. doi: 10.1016/j.jconrel.2009.09.030. Epub 2009 Oct 6. J Control Release. 2010. PMID: 19815039 Review.

Jiang T, Xing B, Rao J. Jiang T, et al. Biotechnol Genet Eng Rev. 2008;25:41-75. doi: 10.5661/bger-25-41. Biotechnol Genet Eng Rev. 2008. PMID: 21412349 Review.

Cited by

Calvanese M, D'Angelo C, Tutino ML, Lauro C. Calvanese M, et al. Mar Drugs. 2024 Jun 28;22(7):299. doi: 10.3390/md22070299. Mar Drugs. 2024. PMID: 39057408 Free PMC article. Review.

Wang C, Yang J, Xu Z, Lv L, Chen S, Hong M, Liu J-H. Wang C, et al. mBio. 2024 May 8;15(5):e0021824. doi: 10.1128/mbio.00218-24. Epub 2024 Apr 2. mBio. 2024. PMID: 38564664 Free PMC article.

Peña-Martínez EG, Rodríguez-Martínez JA. Peña-Martínez EG, et al. Front Biosci (Schol Ed). 2024 Mar 1;16(1):4. doi: 10.31083/j.fbs1601004. Front Biosci (Schol Ed). 2024. PMID: 38538340 Free PMC article. Review.

Tan Z, Tezuka T, Ohnishi Y. Tan Z, et al. J Bacteriol. 2024 Mar 21;206(3):e0045623. doi: 10.1128/jb.00456-23. Epub 2024 Mar 1. J Bacteriol. 2024. PMID: 38426722 Free PMC article.

Huang S, Suo NJ, Henderson TR, Macgregor RB Jr, Henderson JT. Huang S, et al. Sci Rep. 2024 Feb 26;14(1):4631. doi: 10.1038/s41598-024-54463-5. Sci Rep. 2024. PMID: 38409237 Free PMC article.